
J. Fluid Mech. (2017), vol. 812, pp. 5–25. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.791

5
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We present a novel analytical solution for hydro-acoustic waves in a weakly
compressible fluid flow over a slowly varying bottom. Application of a multiple-scale
perturbation technique and matched asymptotic analysis leads to a uniform analytical
solution of the depth-averaged governing equations in three dimensions. We show
that the slow depth variation has a leading-order effect on the evolution of the normal
mode amplitude and direction. This dynamics is much richer than the two-dimensional
limit analysed in previous studies. For tsunamigenic disturbances, we show that the
hydro-acoustic wave field is made up by longshore trapped and offshore propagating
components, which were not explicated in previous work. For a plane beach, we find
an exact analytical solution of the model equation in terms of integrals of Bessel
functions. Our model offers a physical insight into the evolution of hydro-acoustic
waves of interest for the design of tsunami early warning systems.
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1. Introduction
A systematic investigation on the mechanisms of co-generation of gravity and

hydro-acoustic (HA) waves by the same source has started only very recently,
motivated by interesting possibilities of application in coastal engineering. Stiassnie
(2010) was among the first to derive an analytical model of gravity and HA wave
generation by a tsunamigenic bottom deformation in uniform water depth. Later,
Renzi & Dias (2014a) solved a similar problem, but with the forcing term being
a localised surface pressure perturbation in space and time. The propagation of HA
waves generated by bottom movements over a range-dependent environment is a more
complex problem. Kadri & Stiassnie (2013) and Kadri (2015) recently developed a
non-uniform asymptotic approximation for shoaling HA waves over a slowly varying
bottom in two dimensions. However, the results of Kadri & Stiassnie (2013) and Kadri
(2015) cannot be applied to a three-dimensional (3-D) geometry, where the combined
effect of shoaling and refraction dramatically alters the propagation dynamics with
respect to the 2-D scenario. A significant advancement in the field is represented
by the seminal work of Sammarco et al. (2013), who for the first time derived
a 3-D form of the mild-slope equation for weakly compressible fluids (MSEWC)
and solved it numerically. Sammarco et al. (2013) gave a numerical solution of
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6 E. Renzi

the model equation which, however, does not discriminate explicitly between the
eigenfrequencies of the HA modes and how they transform as they propagate.

In this paper, we derive a novel analytical solution for the propagation of HA
wave frequencies, generated by bottom movements, in a 3-D domain occupied by
a compressible fluid over a range-dependent environment. The paper aims to: (i)
review the formulation of Sammarco et al. (2013) of the mild-slope equation for
compressible fluids to derive a form that is solvable analytically in a 3-D domain
(see § 2), (ii) obtain a new analytical solution of the model equation (see § 3) and
(iii) identify the physical nature of the different kinds of HA frequencies excited by
tsunamigenic disturbances over a non-uniform bottom in three dimensions (see § 4).

2. Mathematical model
2.1. Model equations

Calling on Sammarco et al. (2013), consider the motion of a slightly compressible
fluid of density ρ = ρ0 + ρ ′, where ρ0 is the constant ambient density and ρ ′� ρ0 is
a small perturbation due to compressibility. Let (x, z)= (x, y, z) describe the coordinate
of a point in a 3-D fluid domain D, with the z axis orthogonal to the horizontal (x, y)
plane and pointing upwards from the unperturbed water level z = 0. The bottom of
the ocean is at z=−h(x)+ H(x, t), where h(x) is a fixed impermeable surface and
H(x, t) a prescribed time-dependent seafloor motion; t denotes time. The boundary-
value problem for a weakly compressible, inviscid fluid and irrotational motion is:

Φtt = c2(∇2Φ +Φzz), (x, z) ∈D, (2.1)
Φtt + gΦz = 0, z= 0, (2.2)

Φz +∇h · ∇Φ =−Ht, z=−h(x). (2.3)

In the latter system of equations, Φ(x, z, t) is the 3-D velocity potential, g is the
acceleration due to gravity and c = 1480 m s−1 is the speed of sound in water,
assumed constant. Also, ∇f (x) = ( fx, fy) is the 2-D gradient and subscripts denote
differentiation with respect to the relevant variable. The system (2.1)–(2.3) describes
acoustic–gravity waves generated by the bottom disturbance H and is the same as that
considered by Sammarco et al. (2013). In this paper we shall develop a mathematical
method to solve the system of governing equations (2.1)–(2.3) analytically. First,
we shall adopt a Galerkin approach (Massel 2013) to derive the governing partial
differential equation (PDE) in the horizontal plane. Then we shall solve it by
combining a multiple-scale perturbation approach with asymptotic analysis. We
formulate the mathematical problem for a generic single frequency f of the forcing
spectrum, assuming the decompositions:

H(x, t)=Re {H̄(x) e−iωt}, Φ(x, z, t)=Re {Φ̄(x, z)e−iωt}, (2.4a,b)

where i is the imaginary unit and ω = 2πf is the angular frequency. Re {·} denotes
the real part and will be omitted in the following for the sake of brevity. Results
for generic time-dependent disturbances can be found by Fourier superposition of the
harmonic solution Φ (Mei, Stiassnie & Yue 2005; Sammarco et al. 2013). Using (2.4),
the system (2.1)–(2.3) becomes(

∇2 + ω
2

c2

)
Φ̄ + Φ̄zz = 0, (x, z) ∈D, (2.5)
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Hydro-acoustic frequencies of the weakly compressible mild-slope equation 7

Φ̄z − ω
2

g
Φ̄ = 0, z= 0, (2.6)

Φ̄z +∇h · ∇Φ̄ = iωH̄, z=−h(x), (2.7)

where the complex potential Φ̄(x, z) must be bounded in the fluid domain D. Now
expand the spatial potential into a Galerkin series (Massel 2013)

Φ̄(x, z)=
∞∑

n=0

Φ̄n(x, z)=
∞∑

n=0

φn(x)Zn(x, z), (2.8)

where

Zn(x, z)=
√

2 cosh[βn(z+ h)][
h+ g

ω2
sinh2(βnh)

]1/2 . (2.9)

In (2.9) the βn = βn[h(x)] are the solutions of the dispersion relation:

ω2 = gβ0 tanh (β0h), n= 0, (2.10)

βn = iβ̃n, ω2 =−gβ̃n tan(β̃nh), n> 0. (2.11a,b)

The 0th mode represents the surface gravity wave, which is hardly influenced by
compressibility (Yamamoto 1982; Stiassnie 2010; Renzi & Dias 2014a). The higher
modes n > 0 represent the associated HA waves, which for given frequency ω can
be either evanescent or propagating at large |x|, depending on the system parameters
(see § 3). Now introduce the inner product

〈 f (z), g(z)〉 =
∫ 0

−h(x)
f (z)g(z) dz, (2.12)

which together with (2.10)–(2.11a,b) yields 〈Zn, Zm〉 = δnm. Hence the Zn are a
set of orthonormal eigenfunctions in (−h(x), 0). The eigenfunctions (2.9) are a
normalised form of those used in the solution of Sammarco et al. (2013), namely
fn = cosh [βn(z + h)]/ cosh (βnh). Note that the latter expression becomes singular
for z < 0 in the limit βn→ i(2n − 1)π/(2h), which describes the HA modes of the
system (Yamamoto 1982; Stiassnie 2010). Such a singularity would prevent us from
obtaining an analytical representation of the HA field quantities (though a numerical
solution is still possible, see Sammarco et al. 2013). Conversely, the normalised
eigenfunctions (2.9) allow us to solve the problem analytically. Now, let us expand
H̄ into a Galerkin series too

H̄(x)=
∞∑

n=0

H̄n(x)=
∞∑

n=0

Hn(x)Zn(x, z), (2.13)

where the expansion terms

Hn(x)= H̄(x)
2 sinh(βnh)

[2β2
n h+ βn sinh(2βnh)]1/2 (2.14)

follow from the orthogonality of the Zn (2.9). We are now in a position to derive
a depth-averaged form for the boundary-value problem (2.5)–(2.7). By following
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8 E. Renzi

the depth-averaged approach of Sammarco et al. (2013), but using the orthonormal
eigenfunctions (2.9), we get a normalised version of the mild-slope equation for
weakly compressible fluids (MSEWC):

∇2φn +
(
ω2

c2
+ β2

n

)
φn = iωγnHn, n= 0, 1, . . . , (2.15)

where
γn(x)= 4βn

2βnh+ sinh(2βnh)
(2.16)

has the dimension of a wavenumber. The 0th mode of (2.15) represents a progressive
acoustic–gravity wave (Sammarco et al. 2013). Due to the large difference between
gravity and HA wave propagation speed in water, the gravity mode n = 0 is hardly
influenced by compressibility (Stiassnie 2010). Numerous analytical and numerical
models for the gravity mode propagation over a slowly varying bottom are already
available in the literature (e.g. Mei et al. 2005; Massel 2013) and will not be
discussed further. Here we shall focus on the HA modes n > 1 of (2.15).

2.2. The mild-slope equation (MSE) for HA waves

As anticipated in § 2.1, a good approximation for the HA wavenumbers βn = iβ̃n is

β̃n[h(x)] = (2n− 1)π
2h(x)

, (2.17)

see for example Yamamoto (1982), Stiassnie (2010) and Renzi & Dias (2014a). As a
consequence, the eigenmodes (2.9) become

Zn(x, z)=
√

2
h(x)

cos
[
(2n− 1)

π

2

(
1+ z

h(x)

)]
, (2.18)

the forcing terms (2.14) become

Hn(x)= (−1)n+1

(n− 1
2)π

√
2h(x) H̄(x) (2.19)

and (2.16) simplifies to γn(x)= 2/h(x). Substituting the latter expressions into (2.15),
one obtains the sought equation for the HA modes:

∇2φn + k2
n(x) φn =− 4

π

(−1)n

2n− 1
iωH̄(x)

√
2

h(x)
, n= 1, 2, . . . , (2.20)

where

kn(x)=
√
ω2

c2
− (2n− 1)2π2

4h2(x)
(2.21)

is the horizontal index of refraction of the nth HA mode. Expression (2.20) is a
specific form of the normalised MSEWC. We name (2.20) the MSE for HA waves
(MSEHA).
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Hydro-acoustic frequencies of the weakly compressible mild-slope equation 9

3. Free hydro-acoustic waves over topography
3.1. General solution

In this section we study the homogeneous form of the MSEHA (2.20), which
describes free incoming and outgoing HA waves, in the absence of tsunamigenic
forcing. From now on we consider a generic HA mode, say n ∈ N, on a slowly
varying topography in the two horizontal dimensions (2HD), h = h(εx), ε � 1. We
shall now derive a multiple-scale approximation of the spatial HA potential φn(x).
Introduction of the slow variables

ξ = εx, η= εy, (3.1a,b)

transforms the homogeneous version of (2.20) into

ε2∇̃2φn + k2
n(ξ , η)φn = 0, (3.2)

where ∇̃ = (∂/∂ξ, ∂/∂η) is the nabla operator in the slow coordinates. We will first
consider the case of real kn and deal with complex wavenumbers later on. Note that, in
the much simpler 1-D case over a flat bottom, where kn= const., the spatial potential
would be a combination of φn(ξ)= exp(±iknξ/ε), see e.g. Jensen et al. (2011). For a
2HD varying bathymetry, by similarity we look for solutions of the form

φn(ξ , η)= An(ξ , η) exp
[

i
ε

Sn(ξ , η)

]
, (3.3)

where An(ξ , η) and Sn(ξ , η) are unknown real amplitude and phase functions,
respectively. Equation (3.3) is a multiple-scale Wentzel–Kramers–Brillouin (WKB)
expression, in which the wave amplitude varies with the slow coordinates ξ and η,
while the phase varies with the fast coordinates (ξ , η)ε−1, see Bender & Orszag
(1999). Substituting (3.3) into (3.2) and taking the real and imaginary parts of (3.2)
separately zero, we get a system of two nonlinear PDEs:

ε2∇̃2An − |∇̃Sn|2An + k2
nAn = 0, (3.4)

2∇̃An · ∇̃Sn + An∇̃2Sn = 0. (3.5)

Note that the original equation (3.2) and the system (3.4) and (3.5) are absolutely
equivalent, for only the substitution (3.3) has been made so far. Let us now expand
the amplitude and phase functions, respectively

An(ξ , η)= A(0)n (ξ , η)+ εA(1)n (ξ , η)+O(ε2) (3.6)

and
Sn(ξ , η)= S(0)n (ξ , η)+ εS(1)n (ξ , η)+O(ε2), (3.7)

where ε � 1. Substitution of (3.6) and (3.7) into the system (3.4) and (3.5) yields,
respectively, an eikonal equation

|∇̃S(0)n (ξ , η)|2 = k2
n(ξ , η), (3.8)

and a transport equation

∇̃ · {[A(0)n (ξ , η)]2∇̃S(0)n (ξ , η)} = 0, (3.9)
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10 E. Renzi

of the order O(1). The eikonal equation (3.8) can be solved numerically to obtain S(0)n
for given h(εx), see Dingemans (1997), Mei et al. (2005). Once the phase function is
known, then the amplitude A(0)n can be found by solving the transport equation (3.9),
so that the spatial potential φn (3.3) is determined with an error O(ε), for ε� 1. This
numerical strategy can be applied to higher orders of ε, for any slowly varying bottom
profile.

In the following, based on the decomposition (3.3), the eikonal equation (3.8) and
the transport equation (3.9), we shall first prove that the MSEHA (2.20) conserves
the energy flux over a slowly varying depth. Based on this result, we shall derive a
uniform analytical solution for the case of parallel isobaths in § 3.2.

3.1.1. Conservation of energy
The energy flux across a vertical cross-section of unit width orthogonal to the

direction of propagation of the nth HA mode is given in physical variables by

F n(x)= ρω2 Im {φ∗n∇φn}, (3.10)

where Im {·} denotes the imaginary part and φ∗n is the complex conjugate of φn,
see appendix A. Consider a slowly varying bottom in 2HD, h = h(εx), with ε � 1.
Substitution of the slow variables (3.1) and use of the expansions (3.3) and (3.6)–(3.7)
transforms (3.10) into

F n(ξ , η)= ρω2 [A
(0)
n (ξ , η)]2∇̃S(0)n (ξ , η). (3.11)

Multiplying the latter expression by 2/(ρω) and taking the divergence, we obtain
precisely the transport equation (3.9), which then yields

∇̃ ·F n = 0, (3.12)

i.e. a conservation equation (Mei et al. 2005). Expression (3.12) proves that the
MSEHA (2.20) conserves the energy flux over a 2HD slowly varying bottom. Note
that we do not need to apply auxiliary conditions on wave energy conservation to
solve the MSEHA, as its solutions already satisfy the conservation law (3.12).

3.2. Solution for cylindrical topography
We shall now consider the case of straight and parallel isobaths, h = h(εx), which
is amenable to analytical investigation. The depth contours are now parallel to the y
axis, while the x axis points offshore. Using the slow variables (ξ , η), see (3.1), the
free-wave solutions of the MSEHA (2.20) have the form (3.3), where the amplitude
function An and the phase function Sn must satisfy the system of PDEs (3.8)–(3.9) for
ε� 1; the superscripts are dropped for simplicity. In the case of straight and parallel
isobaths, the horizontal index of refraction kn (2.21) is a function of the offshore
coordinate only, and the eikonal equation (3.8) yields the nonlinear first-order PDE

S2
nξ + S2

nη = k2
n(ξ), (3.13)

while the transport equation (3.9) becomes

2∇̃An · ∇̃Sn + An∇̃2Sn = 0. (3.14)
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Hydro-acoustic frequencies of the weakly compressible mild-slope equation 11

Let us first consider the eikonal equation (3.13). Define the wavenumber vector
kn(ξ)= kn(ξ) {cos θn, sin θn}, where θn = θn(ξ) is the angle between the kn vector and
the ξ axis, still unknown. Then (3.13) is equivalent to the vector identity

∇̃Sn = kn, (3.15)

which shows that the wavenumber vector kn is orthogonal to the lines of constant
phase Sn, i.e. the HA wave crests. Now, the curl of (3.15) gives 0 = ∇̃ × ∇̃Sn =
(kn sin θn)ξ , which upon integration yields

kn(ξ) sin[θn(ξ)] = αn, (3.16)

where αn is a real constant. Expression (3.16) shows that the longshore component
of kn keeps constant over straight and parallel isobaths. That is an extension to HA
waves of Snell’s law for gravity waves (Mei et al. 2005). Substitution of (3.16) into
the eikonal equation (3.13) and further integration finally yield the phase function

Sn(ξ , η)=±
∫ ξ

ξ0

µn(σ ) dσ + αnη, (3.17)

where ξ0 is an arbitrary point in the horizontal domain and

µn(ξ)=µn[h(ξ)] =
√
ω2

c2
− (2n− 1)2π2

4h2(ξ)
− α2

n (3.18)

is the offshore component of the wavenumber. In fact, substituting (3.17) back
into (3.15), the wavenumber vector becomes

kn = k±n (ξ)= {±µn(ξ), αn}, (3.19)

where the top sign (+) refers to outgoing HA waves and the bottom sign (−) refers to
incoming HA waves. As a consequence of (3.19), the orientation of the wavenumber
vector with respect to the offshore direction is given by

θ+n = arctan
(
αn

µn

)
, θ−n =π− arctan

(
αn

µn

)
, (3.20a,b)

for the outgoing and incoming waves, respectively. We are now in a position to
solve the transport equation (3.14) for the amplitude function An. Substituting (3.17)
into (3.14), we get two first-order PDEs:

± 2µnAnξ + 2αnAnη =∓Anµnξ , (3.21)

one for each sign of Sn in (3.17). Expression (3.21) can be solved with the method of
characteristics (Hildebrand 1976). The general solution of (3.21) is of the form v =
f (u). In the latter, u(ξ , η, An)= c1 and v(ξ, η, An)= c2 are the general solutions of

± dξ
2µn(ξ)

= dη
2αn

(3.22)
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12 E. Renzi

and
dξ

2µn(ξ)
=− dAn

An µnξ (ξ)
, (3.23)

respectively; c1 and c2 are arbitrary integration constants. Solving (3.22) by parts gives

u(ξ , η)=−η± αn

∫
dξ
µn(ξ)

= c1, (3.24)

while the solution of (3.23) is

v(ξ, η, An)= An(ξ , η) µ
1/2
n = c2. (3.25)

Hence v = f (u) yields

An = A±n (ξ , η)=µ−1/2
n (ξ) f

(
±
∫

αn

µn(ξ)
dξ − η

)
, (3.26)

where f is an arbitrary function and again the + sign denotes outgoing waves, while
the − sign denotes incoming waves. On a cylindrical topography, the amplitude
function must satisfy Anη = 0, see Mei et al. (2005). This implies that the arbitrary
function f in (3.26) must satisfy

f
(
−
∫

αn

µn(ξ)
dξ − η

)
= an, (3.27)

for the incoming wave and

f
(∫

αn

µn(ξ)
dξ − η

)
= bn, (3.28)

for the outgoing wave. In (3.27) and (3.28), an and bn are two arbitrary integration
constants, depending on the boundary conditions of the problem at ξ = ξ0. Now recall
that in this section we are considering free waves, as we have eliminated the localised
forcing term in (2.20). In the absence of localised forcing, no radiation condition can
be applied (Mei et al. 2005). Hence, we must retain both incoming and outgoing
waves in the free-wave solution. Now substitute the phase function (3.17) and the
amplitude function (3.26), together with (3.27) and (3.28), into expression (3.3) for
the spatial potential φn. Then sum both incoming and outgoing waves, and revert to
the physical variables (3.1) to obtain the spatial HA potential

φn(x, y) = 1√
µn(εx)

{
an exp

[
−i
(∫ x

x0

µn(εs) ds− αny
)]

+ bn exp
[

i
(∫ x

x0

µn(εs) ds+ αny
)]}

. (3.29)

The latter is a multiple-scale approximation of the solution (Bender & Orszag 1999).
Along the longshore direction y, (3.29) oscillates with a constant wavenumber αn.
Along the offshore direction x, (3.29) describes waves of slowly varying amplitude
and fast varying phase. Now note that, upon certain combinations of ω and αn, the
offshore wavenumber µn (3.18) can become purely imaginary, i.e. µ2

n < 0. In such
a case, the HA perturbation (3.29) ceases to propagate along x. This means that the
physical behaviour of each HA mode φn is governed by the sign of µ2

n(εx). For any
ω> 0 we distinguish the following cases.
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Hydro-acoustic frequencies of the weakly compressible mild-slope equation 13

(i): |αn| > ω/c. Then µ2
n < 0 for all h and the potential φn (3.29) is a decaying

exponential along x:

φn(x, y)=


an√
µ̃n(εx)

exp
(∫ x

x0

µ̃n(εs) ds
)

exp(iαny), x< x0,

bn√
µ̃n(εx)

exp
(
−
∫ x

x0

µ̃n(εs) ds
)

exp(iαny), x> x0,

(3.30)

where

µ̃n(εx)=
√
(2n− 1)2π2

4h2(εx)
+ α2

n −
ω2

c2
. (3.31)

The wave field (3.30) still propagates along y, i.e. parallel to bathymetry, but decays
along x regardless of the water depth! This is different from the known dynamics in
two dimensions, where each nth HA mode decays only in regions where the water
depth is less than the cutoff value (2n− 1)πc/(2ω), see Yamamoto (1982), Stiassnie
(2010), Kadri & Stiassnie (2013), Kadri (2015). The analytical structure of (3.30)
reveals that no simple harmonic HA waves can exist when |αn| > ω/c, i.e. all HA
waves are trapped. Similar to trapped gravity waves over topography (see Mei et al.
2005), trapped HA waves cannot be excited by a simple harmonic incident HA wave
with a linearised mechanism. However, external excitation of the trapped modes (3.30)
is still possible by a localised source, such as a submarine failure. This case will be
further analysed in § 4.

(ii): |αn| < ω/c. In this case, the physical behaviour of φn depends on the water
depth h. Let us first define the critical depth

dn = (2n− 1)π

2

√
ω2

c2
− α2

n

, (3.32)

as the depth at which the offshore wavenumber µn = 0. Then (3.18) rewrites

µn(εx)=
√(

ω2

c2
− α2

n

)(
1− d2

n

h2(εx)

)
, (3.33)

so that µ2
n(εx) Q 0 when h(εx) Q dn. Mathematically, the points x = xn such that

h(εxn) = dn and, consequently, µn(εxn) = 0 are turning points, through which the
HA potential φn (3.29) turns from exponential (µ2

n < 0) to oscillatory (µ2
n > 0). For

definiteness, let us consider a monotonically increasing bottom depth, hx > 0. Then
there exists at the most one turning point xn, solution of h(εxn)= dn, such that µ2

n Q 0
if x Q xn. Note that (3.29) ceases to be valid in the limit x→ xn (i.e. µn→ 0). We
shall now determine a uniform asymptotic expansion of (3.29) through the turning
point at x = xn (Bender & Orszag 1999). The physical optics approximation (3.29)
suggests that a uniform asymptotic solution of (2.20) must be of the form

φn(x, y)= Xn(x) exp(iαny). (3.34)

In the latter, αn is still the constant longshore wavenumber following from Snell’s
law (3.16), and Xn is the unknown offshore component of the HA potential.
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14 E. Renzi

Substitution of (3.34) into the homogeneous form of (2.20) and use of the slow
variables (3.1) yields

ε2X′′n +µ2
n(ξ)Xn = 0, (3.35)

where the primes denote differentiation with respect to the slow variable ξ .
Expression (3.35) has the form of a time-independent Schrödinger equation of one
spatial dimension (Cheng 2007). Using the method of asymptotic matching at the
turning point (Bender & Orszag 1999), the details of which we omit for the sake of
brevity, and then reverting to the physical variable x= ξ/ε, the solution Xn of (3.35)
can be shown to admit the following uniform asymptotic expansion:

Xn(x)= 2
√

π an√
µn(εx)

[Fn(x)]1/6Ai [−F2/3
n (x)]. (3.36)

In the latter, an is the HA wave amplitude, Ai is the Airy function and

Fn(x)= 3
2

∫ x

xn

µn(εs) ds. (3.37)

Since Fn(x) becomes purely imaginary if x < xn, (3.36) requires the introduction of
a branch cut along the positive real axis to avoid multi-valuedness. The uniform
asymptotic expansion for the HA potential φn is then found by substituting (3.36)
into (3.34).

3.2.1. Numerical example
Let us now study the propagation of free travelling HA waves, incoming from the

far field at x→∞, over a slowly varying bottom. A possible physical mechanism
for the generation of an incoming HA wave of frequency f is the far-field interaction
of two gravity waves of frequency close to f /2 (Longuet-Higgins 1950; Kadri
& Stiassnie 2013). The multiple-scale solution of § 3.2 allows us to gain a deep
physical insight on the system dynamics. As an example, consider the slowly varying
bottom profile h(x)= 3000+ 1000 tanh (2× 10−5x), in metres, and a train of incident
HA waves with frequency f = 0.2 Hz. This value lies within the characteristic
interval of HA frequencies in the deep ocean, see Kadri & Stiassnie (2013). The
water depth in the far field is h∞ = limx→∞ h(x) = 4000 m, to which corresponds a
horizontal index of refraction kn(h∞) = 7.528 × 10−4 m−1 for the first mode n = 1
(see again (2.21)). Hence the wavelength along the direction of propagation in the
far field is λn(h∞) = 2π/kn(h∞) = 8346 m, which is a typical value for HA waves
propagating in the deep ocean (Kadri & Stiassnie 2013). We choose the constant
longshore wavenumber αn = 5 × 10−4 m−1. Note that this choice affects only the
direction of propagation of the HA wave and the location of the critical depth. With
the chosen αn, we get µn(h∞)= 5.628× 10−4 m−1 for the offshore wavenumber (3.18)
and θ−n (h∞) ∼ 132◦ for the angle of propagation (3.20) of the HA wave incoming
from the far field. The critical depth is dn = 2289 m and occurs at the turning point
xn =−44.5 km, where µn(xn)= 0.

Let us first analyse the behaviour of the incoming HA wave away from the turning
point. Figure 1(a) shows the contour plot of the bottom depth profile together with
the vector plot of the wavenumber vector k−n (x)= {−µn(x), αn} for the incoming HA
wave, for the first mode n= 1. Offshore of the turning point (x> xn), the water depth
is greater than the critical depth (h> dn) and µ2

n(x) > 0, see (3.33). The wave field is
oscillatory, the wavenumber vector k−n is oriented at approximately 138◦ with respect
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FIGURE 1. (Colour online) Contour plots of the bottom depth h= 3000+ 1000 tanh (2×
10−5x), in metres, and vector plots of the wavenumber vector (3.19). (a) Incoming wave:
k−n (x), (b) refracted wave: k+n (x). The parameters are n = 1, f = 0.2 Hz and αn = 5 ×
10−4 m−1, which correspond to an angle of incidence of 138◦.

to the x axis (see right side of figure 1a), with the incoming HA crests normal to
k−n . Moving to shallower water towards the turning point (x→ xn), the water depth
tends to the critical depth (h→ dn) and the offshore wavenumber of the incoming
wave µn → 0, see (3.33). However, the longshore wavenumber αn keeps constant
following Snell’s law (3.16). As a result, k−n → {0, αn} as h→ dn, i.e. k−n decreases
in magnitude and becomes increasingly parallel to the contours as the water depth
decreases (see left side of figure 1a). Because of (3.15), the crests become increasingly
orthogonal to the depth contours. Note that this refraction dynamics is opposite to the
refraction of gravity waves, where crests become increasingly parallel to the contours
as h decreases, see Mei et al. (2005). At the turning point (x= xn) the incoming HA
wave is refracted back to deeper water. The refracted wave is outgoing towards the
far field and follows the pattern shown in figure 1(b) for k+n , exiting the domain at
an angle θ+n ∼ 42◦ with respect to the x axis. Clearly, the total HA wave field in the
fluid domain is made up by the sum of incoming and refracted wave components.

Close to the turning point xn=−44.5 km, (3.19) ceases to be valid. The behaviour
of the HA waves must be analysed with the uniform asymptotic solution (3.36).
Figure 2 shows a section of the sample bottom depth profile (figure 2a), together
with the behaviour of the slowly varying wavenumber µn (figure 2b) and the uniform
asymptotic solution φn(x, 0)=Xn(x) (figure 2c), for n= 1, over a long range along the
offshore axis x. Physically, the φn are exponentially decaying HA disturbances when
the water depth is less than the critical depth (h < dn for x < xn), and the sum of
incoming and refracted waves when the water depth is greater than the critical depth
(h> dn for x> xn), as already shown in figure 1. Finally, we compared the asymptotic
solution (3.36) to a fifth-order Runge–Kutta numerical solution of the governing
equation (3.2), see figure 2(c). The agreement between the analytical approximation
and the numerical results is excellent.

Depth-dependent evanescent/propagating dynamics was also observed in two
dimensions by Kadri & Stiassnie (2013) and Kadri (2015). However, the results
obtained in this paper are new for two main reasons. Mathematically, unlike the
non-uniform result of Kadri & Stiassnie (2013), the uniform approximation (3.36)
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FIGURE 2. (Colour online) (a) Bottom profile (solid line) and critical depth (vertical
dashed line). (b) Real and imaginary part of the slowly varying wavenumber µn,
expression (3.33). (c) Normalised mode φn/max(φn) for y= 0, see (3.36). Parameters are
n= 1, f = 0.2 Hz and αn = 0.0005 m−1.

seamlessly connects the near and far fields, without the existence of a transition zone
where the solution is not unique (see figure 2 of Kadri & Stiassnie 2013). Physically,
the 3-D propagation dynamics is significantly richer than that in two dimensions.
In two dimensions, the topography of the seafloor controls the shoaling effects, by
which the HA waves change height and group velocity as they propagate towards
the shallows. Because of such effects, the nth group velocity becomes null at the
critical depth

d(2D)
n = (2n− 1)πc

2ω
, (3.38)

causing complete reflection of the relevant HA mode (Kadri & Stiassnie 2013).
Indeed, the same result is obtained from (3.32) in the 2-D limit αn = 0. In three
dimensions, on the other hand, the topography of the seafloor controls both shoaling
and refraction effects. As a consequence, the HA waves change both height and
direction as they propagate towards shallow water (see again figures 1 and 2).
Hence, in three dimensions, each HA mode is not simply reflected back; instead,
it gradually turns away as it approaches the shoreline (see figure 1a), until the
wavenumber component normal to the shoreline vanishes at the relevant critical depth
dn, see (3.32). The latter defines the location where the nth mode is refracted down
the shelf. Unlike the 2-D limit (3.38), the critical depth in three dimensions (3.32)
depends not only on the angular frequency ω of the incoming HA wave, but also on
its longshore wavenumber αn. Expression (3.32) shows that the critical depth dn is
minimum when αn= 0 (normal incidence, 2-D limit) and increases with increasing αn

(oblique incidence). Physically, the larger the longshore component of the incoming
HA wave, the less it penetrates towards the shore.
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FIGURE 3. (Colour online) (a) Bottom profile for h(x) = 5000 + 3000 tanh (2 × 10−5x),
in metres. (b) Normalised HA modes for y= 0, see (3.36). Parameters are f = 0.2 Hz and
αn = 0.0005 m−1.

Concerning the higher-order HA modes, note that the critical depth (3.32) increases
linearly with the modal order n. Hence, higher-order modes are associated with greater
critical depths and so propagate less onshore, as shown in figure 3. The latter shows
the plot of the sample bottom depth h(x)= 5000+ 3000 tanh (2× 10−5x) (figure 3a)
together with the uniform asymptotic solutions φn(x, 0) = Xn(x) for the first 2 HA
modes (figure 3b). The higher the modal order, the earlier the incoming HA mode is
refracted down to deep water and the less it penetrates into shallower water.

The refraction dynamics modelled by the MSEHA is in agreement with recent field
measurements and numerical modelling of propagating HA waves in complex marine
environments. As an example, Ballard (2012) has investigated the horizontal refraction
of low-frequency sound off the southeast coast of Florida. Ballard (2012) has shown
that, despite the sediment properties and the water-column sound-speed field exhibit
significant range dependence over the shelf, the dynamics is almost exclusively
controlled by the topography of the seafloor. Indeed, the results of Ballard (2012)
confirm that lower modes propagate further up the shelf and the location where they
are refracted down to deep water is controlled by their critical depth (see again
figure 3).

4. Forced hydro-acoustic frequencies over a slowly varying bottom
4.1. Analytical solution on a plane beach

Building on the free-wave results, let us now study how single HA frequencies,
forced by a tsunamigenic disturbance at the bottom of the ocean, propagate over
range-dependent environments. For the sake of example, consider the case of a plane
beach of depth h = εx, with ε � 1. Water is in the region x > 0, the shoreline is
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at x = 0. The plane beach geometry has important practical applications in tsunami
models (Mei et al. 2005; Sammarco & Renzi 2008). It is also particularly interesting
as it allows one to obtain an exact analytical solution in terms of integrals of Bessel
functions. Following Mei et al. (2005), consider a tsunamigenic bottom deformation,
localised at x= x0:

H̄(x)=H0 δ

(
x− x0

a

)
δ

(
y− 0

b

)
. (4.1)

In the latter, δ is the delta function, x0 > 0 is the position of the centre of the
perturbation along the x axis, H0 is the magnitude of the deformation, a and b are
non-dimensionalising parameters. Results for generic disturbances can be found via
the Green theorem (Mei et al. 2005). Symmetry of the perturbation (4.1) with respect
to the x axis allows us to use the cosine Fourier transform pair along the shoreline

φ̂n(x; α)=
∫ ∞

0
φn(x, y) cos(αy) dy; φn(x, y)= 2

π

∫ ∞
0
φ̂n(x; α) cos(αy) dα, (4.2a,b)

so that the MSEHA (2.20) becomes

φ̂nxx +
[
ω2

c2
− α2 − (2n− 1)2π2

4ε2x2

]
φ̂n =− 4

π

(−1)n

2n− 1
iωH0b δ

(
x− x0

a

)√
2
εx
. (4.3)

We shall now solve (4.3) with the method of patched matching (Bender & Orszag
1999). First, request that the solution be continuous at x= x0:

φ̂n(x0 + 0; α)= φ̂n(x0 − 0; α). (4.4)

Then, integrate (4.3) with respect to x across the singularity at x= x0, to get

φ̂nx(x0 + 0; α)− φ̂nx(x0 − 0; α)=− 4
π

(−1)n

2n− 1
iωH0 a b

√
2
εx0

. (4.5)

The governing equation (4.3) is of the Bessel kind (Mei 1997). The solution of (4.3)
that satisfies the matching conditions (4.4) and (4.5) depends on the sign of α−ω/c.
Again, we have two cases.

(i) α >ω/c. The solution is

φ̂n(x;α)= 4
√

2
π

(−1)n

2n− 1
iωH0

a b
ε

√
εx Kνn

(√
α2 − ω

2

c2
x0

)
Iνn

(√
α2 − ω

2

c2
x

)
, x< x0,

(4.6)
for all points landward of the bottom disturbance, and

φ̂n(x;α)= 4
√

2
π

(−1)n

2n− 1
iωH0

a b
ε

√
εx Iνn

(√
α2 − ω

2

c2
x0

)
Kνn

(√
α2 − ω

2

c2
x

)
, x> x0,

(4.7)
for all points offshore of the disturbance. In (4.6) and (4.7), Iνn and Kνn are,
respectively, the modified Bessel functions of first and second kind and order νn,
where

νn =
√

1
4
+ (2n− 1)2π2

4ε2
∼ (2n− 1)π

2ε
, (4.8)
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for ε � 1. Recall that Iνn(z) ∼ (0.5z)νn/Γ (νn + 1) as z→ 0 and Kνn(z) ∼
√

π/(2z)
exp(−z) as z→∞, see Olver et al. (2010). As a consequence, (4.6) yields φ̂n→ 0
for x→ 0 and (4.7) gives φ̂n→ 0 for x→∞. Expressions (4.6)–(4.7) represent trapped
HA waves that are important only in a strip near the bottom deformation.

(ii) α <ω/c. The solution is

φ̂n(x;α)=−2
√

2
(−1)n

2n− 1
ωH0

a b
ε

√
εx Hνn

(√
ω2

c2
− α2x0

)
Jνn

(√
ω2

c2
− α2x

)
, x< x0,

(4.9)
for all points landward of the bottom disturbance, and

φ̂n(x;α)=−2
√

2
(−1)n

2n− 1
ωH0

a b
ε

√
εx Jνn

(√
ω2

c2
− α2x0

)
Hνn

(√
ω2

c2
− α2x

)
, x> x0,

(4.10)
for all points offshore of the disturbance. In (4.9) and (4.10), Jνn and Hνn are,
respectively, the Bessel and the Hankel functions of the first kind. Recall that
Jνn(z)∼ (0.5z)νn/Γ (νn+ 1) as z→ 0, see Olver et al. (2010). As a consequence, (4.9)
yields φ̂n → 0 for x→ 0, i.e. φ̂n decays towards the shoreline. On the other hand,
the function Hνn in (4.10) is outgoing as x→ ∞. Therefore, (4.9)–(4.10) describe
HA waves that decay near the shoreline and propagate towards the far field. Finally,
substitution of (4.6)–(4.10) inside the inverse cosine Fourier transform (4.2), together
with the decomposition (2.8), yields the nth spatial HA potential

Φ̄n(x, z)= Φ̄ t
n(x, z)+ Φ̄p

n (x, z). (4.11)

In the latter,

Φ̄ t
n(x, z) = 16

π2

(−1)n

2n− 1
iωH0

a b
ε

cos
[
(2n− 1)

π

2

(
1+ z

εx

)]
×
∫ ∞
ω/c

[
Kνn

(√
α2 − ω

2

c2
x0

)
Iνn

(√
α2 − ω

2

c2
x

)
He(x0 − x)

+ Iνn

(√
α2 − ω

2

c2
x0

)
Kνn

(√
α2 − ω

2

c2
x

)
He(x− x0)

]
cos(αy) dα

(4.12)

is the trapped component, where He is the Heaviside step function, while

Φ̄p
n (x, z) = − 8

π

(−1)n

2n− 1
ωH0

a b
ε

cos
[
(2n− 1)

π

2

(
1+ z

εx

)]
×
∫ ω/c

0

[
Hνn

(√
ω2

c2
− α2x0

)
Jνn

(√
ω2

c2
− α2x

)
He(x0 − x)

+ Jνn

(√
ω2

c2
− α2x0

)
Hνn

(√
ω2

c2
− α2x

)
He(x− x0)

]
cos(αy) dα

(4.13)
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is the propagating component. Hence the tsunamigenic bottom disturbance (4.1)
generates a twofold HA wave field, made by trapped components (4.12) and
progressive components which propagate offshore, but decay towards the shoreline
(4.13). This happens precisely because the HA frequencies turn away as they approach
the shore (see again § 3). The dynamic pressure can be determined from the HA
potential with the expression pn(x, z, t) = −ρ0Φnt (see Renzi & Dias 2014a), which
yields pn(x, z, t)= pt

n(x, z, t)+ pp
n(x, z, t). In the latter,

p(t,p)n (x, z, t)=Re
{

iρ0ω Φ̄
(t,p)
n (x, z) e−iωt

}
(4.14)

is the dynamic pressure of the nth trapped (propagating) HA component. Finally, we
define the transmission loss as

TL=−20 log10

∣∣∣∣ p̄(x, z)
p0(r= 1 m)

∣∣∣∣ , (4.15)

where p̄(x, z)= iρ0ω Φ̄(x, z) is the spatial component of the total pressure generated
by the bottom disturbance and

p0(r)= ρ0ω
2H0ab

exp(iωr/c)
4πr

(4.16)

is the pressure produced at a distance r by a source of the same intensity as the
bottom disturbance, but in an infinite, homogeneous medium with the ambient density
ρ0 (Jensen et al. 2011).

4.2. Numerical example
Let us now analyse the propagation of HA waves generated by a tsunamigenic
disturbance at the bottom of a plane beach. For simplicity, we shall consider a unit
volume displacement, i.e. a = b = H0 = 1 m, so that the results will be per unit m3

of displaced volume. The bottom slope is ε = 0.08. Figure 4 shows the density plot
of the pressure pt

n of the trapped HA component (4.14) of frequency f = 0.2 Hz and
modal order n = 1 at the bottom of the ocean, z = −εx, generated by the bottom
disturbance at x0 = 25 km from the shoreline, at a depth h0 = 2 km. This choice of
parameters is consistent with the 1693 East Mediterranean earthquake scenario studied
by Cecioni et al. (2015), in which the signal generated at a depth h = 2 km has a
carrier frequency of f ∼ 0.2 Hz. Figure 4 shows that the trapped component decays
either onshore and offshore along the x axis, but propagates parallel to the shoreline.
Note that the trapped component is not refracted, because it has not a progressive
wave structure along x. The plot of the full dynamic pressure pn= pt

n+ pp
n is shown in

figure 5. The signal mostly propagates from the generation point towards deeper water
in the form of outgoing progressive waves. This means that the dynamics away from
the source is dominated by the propagating component pp

n, which is stronger than the
trapped longshore component pt

n of figure 4. Figure 5 also reveals that shorter HA
waves travel faster, followed by a tail of longer waves (see also Yamamoto 1982;
Renzi & Dias 2014b). This is opposite to the dispersive behaviour of gravity waves
(Mei et al. 2005). Finally, note that the refraction effects discussed in § 3 limit the
transmission of the signal towards the shore.

We have also analysed the behaviour of higher modes. Already for n = 2, the
dynamic pressure pn is noticeable only in a very small region near the source and
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FIGURE 4. (Colour online) Pressure pt
n of the trapped HA component at the bottom of

a plane beach, z = −εx, generated by a bottom disturbance located at x0 = 25 km from
the shoreline; x and y denote the offshore and longshore directions, respectively. The
parameters are n = 1, f = 0.2 Hz, ε = 0.08, a = b = H0 = 1 m. Pressure values are in
Pa m−3 of displaced volume. Values are clipped near the source for easiness of reading.
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FIGURE 5. (Colour online) Dynamic pressure pn= pt
n+ pp

n at the bottom of a plane beach,
generated by a bottom disturbance at x0 = 25 km. The parameters are the same as in
figure 4. Pressure values are in Pa m−3 of displaced volume. Values are clipped near the
source for easiness of reading.
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FIGURE 6. (Colour online) Transmission loss TL (4.15) at the bottom of a plane beach
generated by a bottom disturbance at x0 = 25 km. The parameters are the same as in
figure 4. Transmission loss values are in dB re 1 m.

then vanishes quickly away from it. This agrees with the results of Stiassnie (2010),
who found that the first mode carries most of the energy transferred by the bottom
motion to the HA waves. Equally, Eyov et al. (2013), Hendin & Stiassnie (2013),
Cecioni et al. (2015) and Kadri (2015) showed that the first HA mode has the largest
amplitude and contains most of the energy. As a consequence, the higher modes n> 1
do not influence the transmission loss (4.15) away from the source.

Figure 6 shows the transmission loss (TL) at the bottom of the fluid domain,
z=−εx. The plot highlights the existence of a shadow zone where TL is maximum
and the signal is strongly attenuated. This result explains the interesting observations
of Cecioni et al. (2015) on the numerical simulation of the AD 365 Eastern
Mediterranean earthquake. Cecioni et al. (2015) noted that the HA perturbation
generated by the earthquake off western Crete could not reach the shallower water
areas south-west of Sicily, even after long time from the earthquake, despite the
associated tsunami did hit Sicily. Cecioni et al. (2015) hypothesised a filtering
effect of the water depth as the cause of the phenomenon. The analytical solution
of the MSEHA further clarifies the reason of this dynamics: refraction turns the
propagating HA wave frequencies down to deep water, preventing them from reaching
the shallows, where indeed the transmission loss is maximum (see again figure 6).

5. Conclusions
We derived a normalised form of the weakly compressible mild-slope equation for

HA waves in three dimensions (Sammarco et al. 2013) and showed that it satisfies
the conservation of energy on a slowly varying bottom. We obtained a novel uniform
analytical solution of the equation, based on a multiple-scale perturbation technique.
For free HA waves over topography, the bathymetry of the seafloor controls the
change in height and direction of incident HA waves as they propagate towards
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the shallows. Each HA mode gradually turns away from the shoreline until it is
completely refracted back at the relevant critical depth. The extent to which the
HA modes propagate onshore depends on their longshore wavenumber. The smaller
the longshore component, the farther the incident HA wave penetrates in shallow
water before being refracted back. Also, low-order modes are associated with smaller
critical depths and so propagate farther onshore.

For forced generation by a tsunamigenic disturbance on a plane beach, we derived
a novel exact analytical solution in terms of integrals of Bessel functions. We showed
that the HA wave field is made up by a longshore trapped and an offshore propagating
component, which is dominant away from the disturbance. Shorter waves travel faster,
followed by a tail of longer waves. Refraction effects limit the transmission of the
HA wave field towards the shore. As a consequence, there exists a shadow zone near
the shoreline where the transmission loss is maximum and the signal vanishes. This
result is particularly important, because TL plots like that of figure 6 can be used to
determine the optimal position of hydrophone networks capable of capturing the HA
signal generated by an underwater earthquake, in advance of the associated tsunami.

We remark that the bottom of the ocean has been assumed rigid in this study. Eyov
et al. (2013) recently developed a model for an elastic bottom in two dimensions,
which shows that neglecting the elasticity is justified far from the critical depth. At the
critical depth, the leading mode turns into a Scholte wave, due to the modification of
the group and phase speeds induced by the bottom elasticity with respect to the rigid
case. The results of Eyov et al. (2013) would suggest that over a range-dependent
elastic bottom in three dimensions, HA wave refraction is governed by the bathymetry
only at frequencies above the cutoff, with the exception of the first mode. This
implies that physically refraction dominates all modes in deep water, whereas below
the critical depth (h < dn) the present solution could be valid only for the first HA
mode, which indeed is dominant. We further remark that mathematical solutions of
HA waves generated by tsunamigenic disturbances over an elastic bottom in three
dimensions appear not to be available in the literature, leaving this challenging issue
as a topic for further research.

In this paper, we have shown that the trapped longshore HA waves have the
remarkable property of existing at any water depth. For such waves, energy is
confined near the source in the offshore direction and propagates along a narrow
strip parallel to bathymetry. In the case of a bottom dislocation, those longshore
waves are much smaller than the offshore propagating waves, which are dominant.
This highlights the importance of deep sea observatories to detect the HA signal
generated by underwater earthquakes (Cecioni et al. 2015). However, in the case of a
submerged landslide, the scenario could be different. Since HA waves are generated
at different depths as the slide moves down the incline, energy is transmitted to
them at several frequencies and modes. In this case, the trapped low-frequency HA
component could be significant and longshore HA waves could be used to predict
incoming edge waves propagating along a beach (Sammarco & Renzi 2008). This
intriguing research hypothesis is being considered in ongoing work.
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Appendix A. Hydro-acoustic energy flux
Consider the nth HA mode and a vertical cross section of unit width orthogonal to

the direction of propagation along the velocity vector un(x, z, t). The rate of energy
flux across the section is equal to the mean rate of work done by the dynamic pressure
(Mei et al. 2005; Jensen et al. 2011)

F n(x)= ω

2π

∫ 2π/ω

0

∫ 0

−h(x)
pn(x, z, t) un(x, z, t) dz dt. (A 1)

In the latter, pn(x, z, t) = −ρΦnt is the nth-order dynamic pressure and un(x, z, t) =
∇Φn is the horizontal velocity vector. The potential Φn(x, z, t)=Re {Φ̄n(x, z) e−iωt} =
Re {φn(x)Zn(x, z) e−iωt}, where the Zn are still given by (2.18). Performing the latter
substitutions, (A 1) becomes

F n(x)= ρω2π

∫ 0

−h

∫ 2π/ω

0
Re {iωφn(x)Zn(x, z) e−iωt}Re {∇[φn(x)Zn(x, z)] e−iωt} dz dt.

(A 2)
Now recall the property

ω

2π

∫ 2π/ω

0
Re {Ae−iωt}Re {Be−iωt} dt= 1

2
Re {A∗B}, (A 3)

for any complex values A and B independent of t (Mei 1997). Hence, use of (A 3)
and the property 〈Zn, Zn〉 = 1 transforms (A 2) into

F n(x)=−ρω2 Re
{

iφ∗n(x)
[
∇φn(x)+ φn(x)

∫ 0

−h
Zn(x, z)∇Zn(x, z) dz

]}
. (A 4)

Now recall that Zn(x, z) = Zn[h(x), z], so that ∇Zn(x, z) = Znh(h, z)∇h(x). Substitute
the latter into (A 4) and use the property 〈Zn(x, z), Znh(x, z)〉 =−1/h to obtain finally

F n(x)= ρω2 Im {φ∗n(x)∇φn(x)} = ρω2 Im {φ∗n(x) un(x)}. (A 5)

The latter is the sought HA energy flux vector, which is oriented along the direction
of propagation of the perturbation, as expected.
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