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Abstract

A potential flow model is derived for a large flap-type oscillating wave en-
ergy converter in the open ocean. Application of Green’s integral theorem
in the fluid domain yields a hypersingular integral equation for the jump in
potential across the flap. Solution is found via a series expansion in terms
of the Chebyshev polynomials of the second kind and even order. Several
relationships are then derived between the hydrodynamic parameters of the
system. Comparison is made between the behaviour of the converter in the
open ocean and in a channel. The degree of accuracy of wave tank experi-
ments aiming at reproducing the performance of the device in the open ocean
is quantified. A parametric analysis of the system is then undertaken. In
particular, it is shown that increasing the flap width has the beneficial effect
of broadening the bandwidth of the capture factor curve. This phenomenon
can be exploited in random seas to achieve high levels of efficiency.

Keywords: Wave energy, wave-structure interaction, oscillating wave surge
converters

1. Introduction

Recent analysis [1] has shown that the oscillating wave surge converter
(OWSC) is an effective contender in the challenge to extract energy from
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water waves. In its simplest form, the OWSC is a bottom-hinged buoyant
flap used to extract wave power in the nearshore environment, where water
particles move essentially in surge.

Traditional research in wave energy has mostly focused on two-dimensional
(2D) devices [see for example 2], on three-dimensional floating bodies in deep
water [2] and on buoys of characteristic width much smaller than the inci-
dent wavelength, known as “point absorbers” (PA) [3, 4]. More recently, a
number of large-scale offshore devices have been proposed to harness energy
from water waves; see [5, 6] for a compendium of wave energy conversion
techniques. However, the potential of the OWSC is still somewhat disre-
garded. Few numerical and physical models are available in the literature
which assess the performance of the OWSC in monochromatic and random
seas [7, 8, 9, 10]. Nonetheless, investigations with numerical and experimental
techniques [9, 10] have overlooked the occurrence of some peculiar phenom-
ena, like for example the excitation of resonant modes of an OWSC in a
channel, which have been proved instead with analytical methods [11, 12].
Hence an analytical approach is needed to better understand the essential
hydrodynamic properties of the OWSC. Given the incident wave wavenum-
ber k and the flap width w, traditional theories are indeed applicable to the
OWSC in the 2D approximation kw ≫ 1 and in the PA limit kw ≪ 1 [see for
example 4, 13]. However, considering a typical OWSC width w ≃ 30m and
wavelength of the incident wave λ = 2π/k ≃ 100m [1, 10] yields kw = O(1),
which lies outside the domain of applicability of the aforementioned theories.
Lately, Falnes and Hals [14] proposed to treat wave energy converters (WECs)
falling in between the categories of point and line absorbers as “quasi-point
absorbers” (QPA). However, that definition is somehow ambiguous: a pre-
cise mathematical formulation is needed to determine the hydrodynamic be-
haviour of such WECs in detail. The mathematical models of Renzi and Dias
[11, 12] partially achieve this goal. They describe the resonant behaviour of
a single OWSC in a channel and of a periodic array of OWSCs. Within
the framework of potential-flow theory, [11, 12] show that the OWSCs can
attain high levels of capture factor, with peaks occurring at resonance of the
transverse short-crested waves of the channel/array system. Despite the lat-
est advancements, however, the problem of determining the hydrodynamic
behaviour of a single OWSC in the open ocean is still unsolved.

In this paper, a semi-analytical model of a single OWSC in the open ocean
is derived for incident waves of small amplitude A ≪ w. Within this limit,
the fluid is assumed inviscid and incompressible, and the flow irrotational.
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Indeed for very large waves, i.e. A/w = O(1), vortex shedding is likely
to occur at the edges of the flap, together with nonlinear diffraction effects
[13]. Such additional issues are currently being addressed with computational
fluid dynamics models [15] and will not be investigated here. Furthermore,
the design of nearshore devices is also influenced by directionality of the
incoming wave field, wave spreading, tidal range and biofouling effects, which
are addressed separately [e.g. see 16]. Despite neglecting such processes,
the theory presented in this paper still represents an essential approach to
understand the hydrodynamics of the OWSC. This in turn is fundamental
for the successful design of such a costly device.

In §2 the mathematical model is introduced, the equation of motion of the
flap is solved in the frequency domain and the hydrodynamic characteristics
of the system are determined. The potential field at large distance from the
flap is then analysed, to obtain the asymptotic expression of the radiated and
diffracted waves in the far field. Several expressions are derived, which relate
the hydrodynamic characteristics to the wave amplitude of the radiated and
diffracted waves at infinity. In §3 the model is validated against available
numerical results. Then discussion is made on the main parameters of the
system, for a layout inspired by the design of a commercial OWSC. In §4
comparison is made between the behaviour of the OWSC in the open ocean
and in a channel. This allows to quantify the degree of approximation of
experimental models in wave tanks, aiming at reproducing the performance
of the converter in the open ocean. Finally, in §5 a parametric analysis of
the OWSC in the open ocean is undertaken to investigate the influence of
the flap width on the performance of the device.

2. Mathematical model

2.1. Governing equations

Referring to figure 1, consider an OWSC in an open ocean of constant
depth h′; primes denote physical quantities. The OWSC is modelled as a
rectangular flap of width w′ and thickness 2a′. Under the action of monochro-
matic incident waves of amplitude A′

I and period T ′, the flap oscillates about
a hinge placed upon a bottom foundation of height c′. Since the device is
designed to work in the nearshore, where the incident wave fronts are al-
most parallel to the coastline, normal incidence is also assumed. Let θ′(t′)
be the pitching amplitude of the device, positive if anticlockwise and let t′

denote time. Consider a Cartesian system of reference O′(x′, y′, z′), with the
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Figure 1: Geometry of the system in physical variables; (a) plan view, (b) section.

x′-axis opposite to the direction of propagation of the incoming waves, the
y′ axis along the width of the device and the z′ axis pointing upwards from
the still water level. The origin O′ is in the middle of the device at the still
water level (see again figure 1a,b). Let us assume that the fluid is inviscid
and incompressible and the flow is irrotational. Hence there exists a velocity
potential Φ′(x′, y′, z′, t′) which satisfies the Laplace equation

∇′2Φ′(x′, y′, z′, t′) = 0 (1)

in the fluid domain; ∇′f ′ =
(
f ′
,x′ , f ′

,y′ , f
′
,z′

)
and subscripts with commas denote

differentiation with respect to the relevant variable. Let us also assume
that the incident wave amplitude is small compared to the width of the
device, which is the reference length scale of the problem: A′

I/w
′ ≪ 1. As a

consequence, the angular rotation of the flap induced by the incoming waves
is small and the behaviour of the system is linear [11]. On the free surface,
the linearised kinematic-dynamic boundary condition reads

Φ′
,t′t′ + gΦ′

,z′ = 0, z′ = 0, (2)

with g the acceleration due to gravity. Also, absence of flux at the bottom
of the ocean requires

Φ′
,z′ = 0, z′ = −h′, (3)
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while absence of normal flow through the flap yields

Φ′
,x′ = −θ′,t′(t

′)(z′ + h′ − c′)H(z′ + h′ − c′), x′ = ±0, |y′| < w′/2, (4)

where the thin-body approximation has been applied [see 11, 12, 17]. In
expression (4), the Heaviside step function H is used to model the absence
of flow through the bottom foundation. Finally, the wave field generated by
the interaction between the incoming waves and the flap must be outgoing
at large distance r′ =

√
x′2 + y′2 from the body. Incidentally, a similar

boundary-value problem to (1)–(4) has already been considered in the past
to describe the wave field generated by flap-type wavemakers in wave tanks
[18], with additional no-flux conditions on the tank lateral walls. Let us now
introduce the following non-dimensional variables

(x, y, z, r) = (x′, y′, z′, r′)/w′, t =
√

g/w′t′, Φ = (
√

gw′A′)−1Φ′, θ = (w′/A′)θ′

(5)
and constants

(h, c) = (h′, c′)/w′, AI = A′
I/A

′, (6)

where the amplitude scale A′ ≪ w′ because of the hypothesis of small-
amplitude oscillation θ′. By making use of (5) and (6), the governing equation
(1) and the associated boundary conditions (2)–(4) become, respectively,

∇2Φ = 0 (7)

in the fluid domain, and

Φ,tt + Φ,z = 0, z = 0, (8)

Φ,z = 0, z = −h, (9)

and finally

Φ,x = −θ,t(t)(z + h− c)H(z + h− c), x = ±0, |y| < 1/2. (10)

2.2. Solution

Let us assume that the flap performs sinusoidal oscillations of frequency
ω = ω′

√
w′/g = 2π/T , for which the time dependence of the system variables

can be separated as

θ(t) = ℜ
{
Θ e−iωt

}
, Φ(x, y, z, t) = ℜ

{
(ϕI + ϕD + ϕR)e−iωt

}
. (11)
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In the latter,

ϕI = − iAI

ω

cosh k(z + h)

cosh kh
e−ikx (12)

is the spatial potential of the plane incident wave [13], while ϕD(x, y, z) and
ϕR(x, y, z) are, respectively, the potential of the diffracted and the radiated
waves. In (12), k is the wavenumber, solution of the well-known dispersion
relationship ω2 = k tanh kh. By substituting the decomposition (11) for the
velocity potential into the governing equations (7)–(10), the latter become,
respectively,

∇2ϕ(R,D) = 0 (13)

in the fluid domain, the shorthand notation ϕ(R,D) denoting either potential,
and

ϕ(R,D)
,z − ω2ϕ(R,D) = 0, z = 0, (14)

ϕ(R,D)
,z = 0, z = −h, (15)

and finally{
ϕR
,x

ϕD
,x

}
=

{
V (z + h− c)H(z + h− c)

−ϕI
,x

}
, x = ±0, |y| < 1/2. (16)

In the latter, V = iωΘ is the angular velocity of the flap, depending on the
complex amplitude of rotation Θ (see 11), still unknown. The expressions in
(16) are motivated by the fact that ϕR is the solution of the problem in the
absence of incoming waves, while ϕD is the solution of the problem where the
flap is held fixed in incoming waves [see 13, for further reference]. Finally,
ϕ(R,D) must be outgoing as r → ∞. Following the procedure of [11], let
us factor out the vertical dependence of the governing system (13)–(16) by
setting

ϕ(R,D)(x, y, z) =
∞∑
n=0

φ(R,D)
n (x, y)Zn(z), (17)

where

Zn(z) =

√
2 coshκn(z + h)(

h+ ω−2 sinh2 κnh
)1/2 , n = 0, 1, . . . (18)

are the vertical eigenmodes of the flat-bottom water wave problem [see 13],
orthogonal along the water column:∫ 0

−h

Zn(z)Zm(z) dz = δnm, n,m ∈ N, (19)
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being δnm the Kronecker symbol. In (18), κ0 = k and κn = ikn are the
solutions of the dispersion relations

ω2 = k tanh kh; ω2 = −kn tan knh, n = 1, 2, . . . (20)

By substituting the decomposition (17) into (13) and (16) and using the
orthogonality relation (19), we obtain the Helmholtz equation(

∇2 + κ2
n

)
φ(R,D)
n = 0 (21)

and the boundary conditions{
φR
n,x

φD
n,x

}
=

{
V fn
AIdn

}
, x = ±0, |y| < 1/2, (22)

for the unknown two-dimensional velocity potentials φ
(R,D)
n , n = 0, 1, . . . In

expression (22),

fn =

√
2 [κn(h− c) sinhκnh+ coshκnc− coshκnh]

κ2
n

(
h+ ω−2 sinh2 κnh

)1/2 (23)

and

dn =
k
(
h+ ω−2 sinh2 κnh

)1/2
√
2ω coshκnh

δ0n (24)

are real constants. Finally, the φ
(R,D)
n must be outgoing disturbances as

r → ∞. The boundary-value problem (21)–(22) set for φ
(R,D)
n is similar in

form to that obtained by Renzi and Dias [11] for an OWSC in a straight
channel. In the latter, however, waves are reflected by the lateral walls and
can propagate only along the channel axis. Following the general method
of [11], the solution to (21)–(22) is found in Appendix A by applying an
integral-equation technique based on Green’s theorem. Using an appropriate
decomposition of the 3D Green function into a singular part and an analytic
remainder allows to solve the plane boundary-value problem for φ

(R,D)
n and

to express the spatial potentials ϕ(R,D) (17) in a semi-analytical form (see
Appendix A for details). The radiation potential is given by

ϕR(x, y, z) =
−iV

8

∞∑
n=0

κnxZn(z)
P∑

p=0

α(2p)n

×
∫ 1

−1

(1− u2)1/2U2p(u)
H

(1)
1

(
κn

√
x2 + (y − u/2)2

)
√
x2 + (y − u/2)2

du,(25)
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where H
(1)
n is the outgoing Hankel function of first kind and order n and the

U2p denote the Chebyshev polynomials of the second kind and even order
2p, p = 0, 1, . . . , P ∈ N. Finally, the α(2p)n are complex constants obtained
with a numerical collocation scheme (see again Appendix A), therefore the
solution (25) is semi-analytical. Analogously, the spatial diffraction potential
is given by

ϕD(x, y, z) =
−iAI

8
kxZ0(z)

P∑
p=0

β(2p)0

×
∫ 1

−1

(1− u2)1/2U2p(u)
H

(1)
1

(
k
√
x2 + (y − u/2)2

)
√
x2 + (y − u/2)2

du. (26)

In the latter, the β(2p)n are complex constants, obtained again with a numer-
ical collocation scheme. Let us now analyse the equation of motion of the
flap.

2.3. Flap motion

In expression (25) the angular velocity of the flap, V = iωΘ, is still
unknown and must be determined by studying the motion of the body. The
equation of motion of the flap in the frequency domain is that of a damped
harmonic oscillator [13], i.e.(

−ω2I + C − iωνpto
)
Θ = F , (27)

where ω is the frequency of oscillation, I = I ′/(ρw′5) is the moment of
inertia of the flap, C = C ′/(ρgw′4) is the flap buoyancy torque and νpto =

ν ′
pto/(ρw

′5
√

g/w′) is the power take-off (PTO) coefficient; ρ is water density.
In expression (27),

F = iω

∫ 0

−h+c

∫ 1/2

−1/2

∆ϕ(y, z)(z + h− c) dydz (28)

is the complex hydrodynamic torque on the flap, where

∆ϕ =
[
ϕD(−0, y, z) + ϕR(−0, y, z)

]
−
[
ϕD(+0, y, z) + ϕR(+0, y, z)

]
(29)

is the jump in potential between the two sides of the flap (see Appendix A).
By using (29), (A.4) and (A.8) in (28), substituting the latter in (27) and
performing some algebra, the equation of motion of the flap reads[

−ω2(I + µ) + C − iω(ν + νpto)
]
Θ = F, (30)
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where

F =
−iωπ

4
AIf0β00 (31)

is the exciting torque,

µ =
π

4
ℜ

{
∞∑
n=0

fnα0n

}
(32)

is the added torque due to inertia and finally

ν =
ωπ

4
f0ℑ{α00} (33)

is the radiation damping. In the latter, only the propagating mode n = 0
is present, because higher order eigenmodes correspond to evanescent waves
that do not radiate from the flap (see §2.4). In the following, approximated
expressions of the radiation and diffraction potentials will be obtained at
large distance from the flap.

2.4. Behaviour in the far field

First, let us consider the radiation potential (25) and rewrite it in polar
coordinates: ϕR(x, y, z) = ϕR(r, γ, z), where

(x, y) = r(cos γ, sin γ) (34)

(see figure 1a). For an observer far away from the OWSC, the flap behaves
as a dipole-mode radiator, so that

ϕR(r, γ, z) ∼ ϕR(r, 0, z) cos γ (35)

as r → ∞. Now perform the change of variable (34) into (25) and consider
the inner integral of ϕR(r, γ = 0, z), i.e.

Inp =

∫ 1

−1

(1− u2)1/2U2p(u)

H
(1)
1

(
κnr
√
1 + u2

4r2

)
r
√
1 + u2

4r2

du. (36)

For n > 0, then κn = ikn and the Hankel function inside the integral (36)
transforms into the modified Bessel function of the second kind K1 [see 19,
§8.407], which decays exponentially for large r. Therefore the terms n > 0 do
not give any significant contribution to the radiated wave field (35) at large
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Figure 2: Approximation of the integral I00 (36) (solid blue line) with expression (38)
(dashed black line) for large r. Parameters are: (a) k = 2, (b) k = 4. The geometry of
the system is detailed in table 1.

distance from the flap. Physically, such terms correspond to the evanescent
modes of the system, which are trapped near the source [see for example
13]. Now consider n = 0. At large r the Hankel function in I0p (36) can be
approximated as [see 17]

H
(1)
1

(
kr

√
1 +

u2

4r2

)
∼
√√√√ 2

πkr
√

1 + u2

4r2

exp

(
ikr

√
1 +

u2

4r2
− i3π/4

)
. (37)

Note that the argument of the square roots in the latter expression is 1 +
O(r−2). As r → ∞, the terms O(r−2) in (37) and in (36) can be neglected,
thus yielding the sought approximated expression

I0p ≃ 1

r

√
2

πkr
eikre−i3π/4

∫ 1

−1

(1− u2)1/2U2p(u) du

=
π

2

1

r

√
2

πkr
eikre−i3π/4δp0, (38)

as r → ∞, where the orthogonality relation of [19, §7.343] has also been used.
Numerical investigation for a typical geometry of the system reveals that (38)
converges to the exact value (36), as shown in figure 2. Now, expressing (25)
in polar coordinates (34), applying the dipole relation (35) and using the
approximated expression (38) for the inner integral, yields the expression of
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the radiation potential in the far field

ϕR(r, γ) ∼ −iV

ω
AR(γ)

cosh k(z + h)

cosh kh

√
2

πkr
ei(kr−π/4), (39)

as r → ∞. In the latter expression,

AR(γ) =
−iπ

8
√
2
k cos γ α00

ω cosh kh(
h+ ω−2 sinh2 kh

)1/2 (40)

is the angular variation of the radially spreading wave [see 13], for unit ro-
tational velocity of the flap. Analogous reasoning applied to the diffraction
potential ϕD (26) yields

ϕD(r, γ) ∼ −iAI

ω
AD(γ)

cosh k(z + h)

cosh kh

√
2

πkr
ei(kr−π/4) (41)

at large distance from the plate, where

AD(γ) =
−iπ

8
√
2
k cos γ β00

ω cosh kh(
h+ ω−2 sinh2 kh

)1/2 (42)

is the angular variation of the diffracted wave, for unit amplitude of the
incident wave. In the following section we shall derive some useful relations
for the hydrodynamic coefficients of the system.

2.5. Derivation of relations for the OWSC in the open ocean

In this section we obtain some relations between the hydrodynamic co-
efficients of the system, based on the asymptotic analysis of §2.4. Some
of these relations are well-known in the literature for 3D bodies of general
shape, while some others are new and provide insightful information on the
hydrodynamics of the OWSC.

2.5.1. Relation between F and AR (3D Haskind relation)

Consider the exciting torque F (31) and rewrite it as

F =
−iωπ

4
AIα00d0 (43)

11



by virtue of (A.12), where d0 is still given by (24). Then isolating α00 from
(40) with γ = 0, substituting it into (43) and performing some simple algebra
yields

F =
4

k
AICgAR(0), (44)

which is the well-known Haskind relation for a 3D floating body [see for
example 13]. The latter relates the exciting torque to the wave amplitude
radiated by the body in the direction opposite to the incident wave.

2.5.2. Relation between F and AD

Consider again the exciting torque F (31). Now isolate the term β00 from
(42) with γ = 0, substitute it into (31) and perform the straightforward
algebra to obtain

F =
4

k
AIAD(0)

tanh kh

k

(
h− c+

cosh kc− cosh kh

k sinh kh

)
. (45)

The latter shows that the exciting torque is also proportional to the amplitude
of the wave scattered in the opposite direction to that of the incident wave.

2.5.3. Relation between ν and AR

Consider now the radiation damping coefficient ν (33). By isolating α00

in (40) with γ = 0 and substituting it into (33), the latter gives

ν =
4

k
ℜ
{
AR(0)

} tanh kh

k

(
h− c+

cosh kc− cosh kh

k sinh kh

)
, (46)

which relates the radiation damping to the amplitude of the radiated wave
in the forward x direction.

2.5.4. Relation between ν and F

Finally let us inspect expression (46). By taking the real part of the
Haskind relation (44), isolate ℜ

{
AR(0)

}
and substitute it into (46), so that

the latter becomes

ν =
tanh kh

kCg

(
h− c+

cosh kc− cosh kh

k sinh kh

)
ℜ
{

F

AI

}
, (47)

which can be regarded as a particular form of the general Haskind relation
(44) tailored to the OWSC. Expressions (44)–(47) have been used to check
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the numerical evaluations of Appendix A. Given the general equation l.h.s =
r.h.s, the relative error

ϵ =
|l.h.s.− r.h.s.|

|r.h.s.|
is defined to assess the accuracy of computations. For a typical OWSC
configuration (see table 1), taking maxn = 2 and max p = 5 in (A.9) allows
to obtain a maximum relative error ϵ = O(10−15) for expressions (44)–(47).
In the following section we shall analyse the performance of the device.

2.6. Wave energy extraction

Consider the equation of motion of the flap (30). The latter describes a
damped harmonic oscillator in the frequency domain. As a consequence, the
average generated power over a period is

P =
|F |2

4(νpto + ν)
, (48)

provided the PTO system is designed such that

νpto =

√
[C − (I + µ)ω2]2

ω2
+ ν2, (49)

which corresponds to the optimum PTO damping [see for example 4]. To
assess the performance of the OWSC, the capture factor [also known as
capture width ratio or relative capture width, see 6]

CF =
P

1
2
A2

ICg

=
|F |2

2A2
ICg(νpto + ν)

(50)

is defined as the ratio between the power output of the device and the power
of the incident wave per unit width of the device, where

Cg =
ω

2k

(
1 +

2kh

sinh 2kh

)
(51)

is the group velocity of the incident wave in non-dimensional variables. Fur-
thermore, if the flap is designed such that its buoyancy torque C and inertia
torque I satisfy the relation

ω2(I + µ) = C, (52)
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Flap width (m) Foundation height (m)
w′ c′

18 1.5
Ocean depth (m) Amplitude incident wave (m)

h′ A′
I

10.9 0.3

Table 1: Geometry of the system and parameters of the incident wave field chosen for
comparison with numerical data.

i.e. the flap is tuned to resonance with the incident waves, νpto = ν from (49)
and the capture factor (50) attains its optimum value, for given k:

Copt
F =

|F |2

4A2
ICgν

=
|AD(0)|2

kℜ{AD(0)}
, (53)

where (45) and (47) have also been used. Note that the optimum capture
factor (53) depends on the amplitude of the diffracted wave in the direction
opposite to that of the incident wave and can be determined directly by solv-
ing the diffraction problem for ϕD (26). In the following, the mathematical
model presented in this section will be validated against available numerical
results. Then discussion will be made on the hydrodynamic coefficients of a
typical OWSC configuration. Afterwards, the behaviour of a single OWSC
in the open ocean will be compared to that of an OWSC in a channel, which
reproduces a common layout for experimental studies in wave tank. Finally,
a parametric analysis will be performed to investigate the influence of the
flap width on the performance of the OWSC in the open ocean.

3. Discussion

3.1. Validation

In this section we shall compare the results of the mathematical model
of §2 with available numerical data. The geometry of the system chosen
for comparison is reported in table 1. Such dimensions are inspired by the
design of the Oyster 1TM wave energy converter developed by Aquamarine
Power Ltd [APL, see 20]. Values of C and I have been obtained by private
communication with APL. Note that, since A′

I/w
′ ≃ 0.02 ≪ 1, the regime

of the system is linear (see §2). In figure 3 comparison is made between
the semi-analytical results of §2 and the numerical data of van’t Hoff [7]
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Figure 3: Comparison of the semi-analytical model of §2 (solid lines) with the numerical
model of van’t Hoff [7] (dots), for several thicknesses of the plate 2a′. (a) added inertia
torque (32); (b) exciting torque (31). Values are in physical variables.

for a single OWSC in the open ocean. The latter have been obtained with
the software package WAMIT [21] for the linear analysis of fluid-structure
interaction. In [7] the flap was modelled as a rectangular, 18m wide box
standing on a triangular prism pointing downwards, hinged on a 1.5m tall
platform in a 10.9m deep ocean. Figures 3(a) and 3(b) show, respectively,
the values of the added inertia torque µ′ = µρw′5 and the magnitude of the
exciting torque |F ′| = |F |ρgA′w′3 against the period of the incident waves
for the semi-analytical model of §2 and the numerical model of [7]. The
agreement between both models is very good for the exciting torque but less
satisfactory for the added inertia torque. However, note that the results of
[7] were obtained with a rather coarse mesh [see figure 3.1 of 7]. As shown
by [22], in numerical models the added inertia is more sensitive than the
exciting action to mesh resolution, especially at small periods. This explains
why the discrepancies between the numerical and the semi-analytical model
occur for the added mass (figure 3a) but not for the exciting torque (figure
3b). Let us now analyse the performance of the device.

3.2. Performance analysis

Figures 4(a) and 4(b) show, respectively, the magnitude of the rotation
|Θ′| = (A′

I/w
′)|Θ| and the capture factor CF for the configuration of table 1.
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Figure 4: Behaviour of (a) amplitude of rotation in degrees and (b) capture factor (50)
with the period of the incident wave in physical variables, for the geometry of table 1. In
(b) the dashed lines represents the optimum theoretical capture factor Copt

F (53).

While the angular displacement of the flap increases monotonically with the
incident wave period T ′, the capture factor instead is larger in short periods.
The largest capture factor is max {CF} ≃ 0.73 at T ′ ≃ 5.7 s and is of the
same order of magnitude as that predicted by Whittaker and Folley [1] for a
similar OWSC configuration. For real devices, more complex flap shapes and
foundation systems could help to achieve even larger figures [8]. Note that the
behaviour of the capture factor of figure 4(b) resembles very closely that of the
exciting torque shown in figure 3(b). Hence the performance of the OWSC is
essentially dominated by the exciting torque, as already outlined by [10]. In
other words, the dynamics of the OWSC is governed by diffractive processes.
It is then clear that PA and QPA dynamics, governed by radiative processes
[4], are inadequate to describe the behaviour of large flap-type WECs like
the OWSC. In figure 4(b), the optimum theoretical capture factor Copt

F (53)
is also plotted for comparison with the actual value CF (50). The two curves
are very close for short periods. Then Copt

F increases almost linearly in longer
waves and becomes much larger than CF . This happens since the OWSC is
not designed tuned to resonance, i.e. the flap buoyancy torque C and inertia
I do not satisfy the resonance condition (52). As a consequence, νpto > ν (see
49) and CF < Copt

F (see 50). This choice can be justified by considering that,
if the resonance condition (52) occurred, then the stroke of the flap would
exceed by far the amplitude of the incident wave, resulting in a situation
not compatible with the power take-off system [1, 10]. In conclusion, Copt

F

(53) can be used in short periods for a quick performance assessment of the
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Figure 5: Behaviour of (a) exciting torque ratio and (b) capture factor ratio between the
the channel model of Renzi and Dias [11] and the open ocean model of §2, versus the period
of the incident wave. The geometry of the system is detailed in table 1. The blockage
ratio in the channel model is w = 0.2.

device. Then the analysis must be refined by calculating CF with the full
expression (50). In the following section, we shall compare the behaviour of
the OWSC in the open ocean and in a channel. This will allow us to assess
the influence of the channel lateral walls on the performance of the system
in experimental studies conducted in wave tanks.

4. OWSC in the open ocean vs. OWSC in a channel

Let us compare the behaviour of the OWSC in the open ocean (see §2)
versus the behaviour of the same device in a channel of width b′ [see 11]. Such
a layout is commonly used in wave tank experiments aiming at reproducing
the dynamics of the system in the open ocean [see for example 1, 10]. The
geometry chosen for comparison is again that of table 1. In the channel
model, the channel width is b′ = 91.6m and the relevant blockage ratio
is w = w′/b′ ≃ 0.2. The latter corresponds to that used in wave tank
experiments at Queen’s University Belfast on a 1 : 20 scale Oyster 1 WEC
[for details see 9, 10]. In figure 5(a) the ratio |F ′

c/F
′| between the exciting

torque in the channel |F ′
c| and in the ocean |F ′| is plotted against the period

of the incident wave in physical variables. As expected [see 11], the effect
of the lateral walls in the channel configuration is revealed by the spikes
occurring at the resonant periods of the channel short-crested waves, also
known as sloshing modes (see table 2). Those periods correspond to the cut-

17



m 1 2 3 4 5
T ′
m (s) 9.6 5.7 4.5 3.8 3.4

Table 2: Resonant periods of the first five sloshing modes in a channel of width b′ = 91.6m.

off wavelengths λ′
m = b′/m, m = 1, 2, . . . , at which the mth sloshing mode

turns from propagating to evanescent, i.e. trapped near the device [for details
see 11, 12]. For oscillating flaps in a channel – or an infinite array of flaps
– other resonant modes are indeed possible, in addition to those reported in
table 2. Such modes have been identified by Mei et al. [13, 23] and Sammarco
et al. [24, 25] and correspond to the flaps oscillating in total absence of
propagating waves along the channel (MS modes in the following). While
the sloshing modes are an intrinsic feature of the channel, the MS modes are
a property of the flap-channel system. As shown by [13, 23], when the MS
modes resonate there are neither long-crested waves nor propagating sloshing
modes along the channel. As a consequence, the resonant periods of the MS
modes must be larger than T ′

1 [see condition (8.10.4) of 13]. For the geometry
of table 1, the first MS mode [also corresponding to the out-of-phase motion
of two neighbouring flaps in an infinite array, see 13] can be calculated with
equation (8.10.13) of [13], allowing for minor changes due to the presence of
the foundation, and occurs at T ′ ≃ 17 s. As expected, the latter is larger
than T ′

1 (see table 1) and falls out of the domain considered in this paper.
Indeed, further investigation on the occurrence and effects of the MS modes
for the OWSC is needed and will be performed in future work. Back to the
current analysis, note from figure 5(a) that, for the chosen geometry, the
influence of the lateral walls results in a 10% increase of the exciting torque
in the channel, at the resonant peaks, with respect to the open ocean values.
Analogous results have been also obtained by Chen [26] for the horizontal
loads on a truncated vertical cylinder. Note that a similar behaviour occurs
also for the ratio CFc/CF of the capture factor in the channel CFc and in the
open ocean CF , as depicted in figure 5(b). The increase of the capture factor
is of the same order of magnitude - about 10% - than the increase of the
exciting torque. It is then clear that care should be taken when employing
the results obtained in a wave tank to predict the behaviour of the OWSC
in the open ocean, as already noted by Renzi and Dias [11]. To quantify the
degree of approximation of such practice in linear-regime tests, let us further
investigate the effect of changing the width of the channel in the wave tank
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Figure 6: Behaviour of the exciting torque ratio between the channel model of Renzi and
Dias [11] and the open ocean model of §2 for several blockage ratios, versus the period of
the incident wave. The geometry of the system is detailed in table 1.

model [Thomas performed a similar investigation on a circular cylinder, but
excluding the resonant values, see 27]. Figure 6 shows the behaviour of
the exciting torque ratio |F ′

c/F
′| against the period of the incident wave in

physical variables, for several blockage ratios. When w is small, the channel
is much larger than the flap and a number of resonant peaks occur (see
curve w = 0.1 in figure 6). However, the influence of the lateral walls is
not appreciable and |F ′

c/F
′| ≃ 1. When w increases, the number of resonant

peaks in the selected period range decreases, while the ratio |F ′
c/F

′| increases
at peaks. The deviation of the latter ratio from unity is still negligible (about
10%) for w = 0.2, but is definitely substantial for w ≥ 0.3. Therefore we
recommend a blockage ratio not larger than 0.2 for wave tank tests in the
linear regime, aiming at reproducing the behaviour of the device in the open
ocean. In the following section we shall perform a parametric analysis of the
OWSC in the open ocean with respect to the flap width w′.

5. Parametric analysis of the OWSC in the open ocean

Here we undertake a parametric analysis of the system to investigate the
influence of the flap width w′ on the behaviour of the OWSC. In figure 7(a–
d) the added inertia torque µ′, the radiation damping ν ′, the magnitude of
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Figure 7: Behaviour of (a) added inertia torque, (b) radiation damping, (c) magnitude of
the exciting torque and (d) capture factor versus the period of the incident wave. The
geometry of the system is detailed in table 1. Three different flap widths have been
considered.

the exciting torque |F ′| and the capture factor CF are plotted against the
period of the incident waves in physical variables, for three different widths
of the device, namely w′ = 12, 18, 26m. The foundation height, the ocean
depth and the incident wave amplitude are still those of table 1. Generally,
increasing the width w′ determines all the hydrodynamic characteristics, µ′,
ν ′ and |F ′|, to increase. The larger the width of the flap, the larger are the
peaks of said parameters, as shown in figure 7(a–c). A larger flap width, in
fact, corresponds to a larger surface area, which in turn determines higher
inertia torque, radiative capacity and exciting torque [see 1, 10]. Concerning
the capture factor CF , increasing the width of the flap determines both a
migration of the peak values towards larger periods and a broadening of the
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curve bandwidth, as shown in figure 7(d). The peak values of the capture
factor curve, however, remain almost constant. This behaviour is different
from that noticed by Renzi and Dias [11] for an OWSC in a channel. There,
the wider flaps have also a larger resonant peak, provided the blockage ratio
is still small [otherwise the dynamics is quasi-2D and CF → 1/2, see 11]. This
is due to the selective behaviour of the channel sloshing modes, for which the
most powerful resonance occurs with large flaps [see also 10]. In the open
ocean, on the other hand, the radial spreading of energy to infinity inhibits
such resonant mechanisms and prevents the occurrence of resonant peaks in
the capture factor curve. Nevertheless, increasing the OWSC width in the
open ocean has still the beneficial effects of broadening the bandwidth and
increasing the peak period of the curve (see again figure 7d). In practical
applications in random seas, this fact could be exploited by designing the
width of the flap so that the resulting capture factor bandwidth couples well
to the wave spectrum of the incident sea [see Sarkar et al., 28].

6. Conclusions

A semi-analytical potential flow model is derived for a single OWSC in
the open ocean. Application of Green’s integral theorem in the fluid domain
yields a system of hypersingular integral equations for the jump in potential
between the two sides of the flap. The system is solved via a series expansion
in terms of the Chebyshev polynomials of the second kind and even order.
The hydrodynamic parameters of the system are then fully characterised
and the equation of motion of the flap is solved. Asymptotic expressions of
the velocity potential are obtained for both the diffracted and radiated wave
fields. Several relationships are found between the hydrodynamic parameters
and the amplitude of the radiated and diffracted waves in the far field. Some
of them are well known in the literature, while others are new and point out
the distinguishing features of the OWSC with respect to other WECs. In
particular, it is shown that diffractive effects are fundamental for a correct
description of the OWSC hydrodynamics. This rules out the applicability
of PA and QPA theories to the present case. Analysis for a specific OWSC
configuration, inspired by the design of the Oyster 1TM WEC, shows that
the capture factor of the system is governed by the exciting torque acting
on the flap. High levels of capture factor can be attained, even though the
OWSC is not usually tuned to resonance with the incident wave field. The
behaviour of the OWSC in the open ocean is then compared with that in
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a channel. This allows to quantify the degree of accuracy of wave tank ex-
periments aiming at reproducing the behaviour of the device in the open
ocean. We found that blockage ratios less than 0.2 guarantee a good agree-
ment between the open-ocean and the channel models in the linear regime.
Finally, parametric analysis of the OWSC in the open ocean reveals that
the hydrodynamic characteristics of the system, i.e. exciting torque, added
inertia torque and radiation damping, all increase by increasing the width
of the flap w′. The peak capture factor, instead, shows no appreciable vari-
ations with w′. However, increasing the flap width has the beneficial effect
of enlarging the bandwidth of the capture factor curve. This property holds
also in random seas, as shown in [28].

This study was funded by Science Foundation Ireland (SFI) under the re-
search project “High-end computational modelling for wave energy systems”.

Appendix A. Semi-analytical solution

In this section we find the solution to the radiation and scattering prob-
lems of §2 by using the Green integral theorem in the fluid domain. The
method we employ follows the same procedure devised by Renzi and Dias
[11] for a flap in a channel. Consider the plane potentials φ

(R,D)
n , solutions

of the system (21)–(22) and outgoing as r → ∞. Application of the Green
integral theorem in a large circular region enclosing the flap in the (x, y)
plane [see 29] yields

φ(R,D)
n =

∫ 1/2

−1/2

∆φ(R,D)
n (η) Gn,ξ(x, y; ξ, η)|ξ=0 dη. (A.1)

In the latter,

Gn(x, y; ξ, η) =
1

4i
H

(1)
0

(
κn

√
(x− ξ)2 + (y − η)2

)
(A.2)

is the Green function in the (x, y) plane [see 17], singular at (x, y) = (ξ, η)
and outgoing as r → ∞, while

∆φ(R,D)
n (y) = φ(R,D)

n (−0, y)− φ(R,D)
n (+0, y) (A.3)

is the jump in the plane radiation and diffraction potentials across the plate.
Following the procedure of [11], apply the boundary condition (22) to the
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spatial potentials (A.1). Then expand the Hankel function inside Gn (A.2)
according to [19, §8.444], perform the change of variable u = 2η and define

(Pn, Qn)(u) = (∆φR
n ,∆φD

n )(η). (A.4)

With these manipulations, expression (22) finally becomes

H

∫ 1

−1

{
Pn(u)
Qn(u)

}
(v0 − u)−2 du

+

{
Kn [Pn(u)]
Kn [Qn(u)]

}
= −π

{
V fn
A0 dn

}
, |y| < 1/2. (A.5)

In the latter, which is formally equivalent to (B15) of [11], the symbol H
∫

indicates the Hadamard finite-part integral [see 11, 17] and

Kn[f(u)] =
iπκn

4

∫ 1

−1

f(u)
Rn(

κn

2
|v0 − u|)

|v0 − u|
du, (A.6)

where v0 = v0(y) = 2y ∈ (−1, 1) and

Rn(α) = J1(α)

[
1 +

2i

π

(
ln

α

2
+ γ
)]

− i

π

[
α

2
+

+∞∑
j=2

(−1)j+1(α/2)2j−1

j!(j − 1)!

(
1

j
+

j−1∑
q=1

2

q

)]
, (A.7)

J1(x) is the Bessel function of first kind and first order and γ = 0.577215 . . .
the Euler constant. Note that Kn (A.6) has a convergent kernel. Hence
expression (A.5) has a singularity only in the finite-part integral of the left-
hand side, at u = v0. In order to solve (A.5) in terms of the jump in potentials
Pn and Qn, we seek for solutions of the type{

Pn(u)
Qn(u)

}
=

{
V
A0

}(
1− u2

)1/2 +∞∑
p=0

{
αpn

βpn

}
U2p(u), (A.8)

where the αpn and βpn are unknown complex constants and the U2p are the
Chebyshev polynomials of the second kind and even order 2p, p ∈ N. Sub-
stituting the series expansion (A.8) into the singular equation (A.5) and
performing the algebra yields finally

∞∑
p=0

{
αpn

βpn

}
Cpn(v0) = −

{
fn
dn

}
, v0 ∈ (−1, 1), (A.9)
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with

Cpn(v0) = −(p+ 1)Up(v0) +
iκn

4

∫ 1

−1

(
1− u2

)1/2
Up(u)

×
Rn(

κn

2
|v0 − u|)

|v0 − u|
du. (A.10)

The linear systems of (A.9) can be now solved numerically by truncating the
series to a finite number P < ∞ and by taking a finite number of evaluation
points v0 = v0j, with j = 0, 1, . . . P . A fast numerical convergence of (A.9) is
guaranteed when the v0j are the zeros of the first-kind Chebyshev polynomials
[see 17]

v0j = cos
(2j + 1)π

2P + 2
, j = 0, 1, . . . , P, (A.11)

for which (A.9) reduces to two (P +1)× (P +1) truncated algebraic systems
for each n. The latter can be easily solved to determine the αpn and the βpn.
Finally, some solvability conditions must be satisfied to ensure the uniqueness
of the solution to (A.9). For n > 0, dn = 0 (see 24), so it must be βpn = 0
to ensure uniqueness of the αpn. Physically, this means that the diffraction
problem does not admit evanescent modes. For n = 0, instead, the solution
to (A.9) is unique if

βp0 = αp0d0/f0. (A.12)

The plane radiation and scattering potentials, (25) and (26) respectively, can
now be obtained by substituting the found jumps in potential (equations A.4
and A.8) into Green’s theorem (A.1) and by summing up all the vertical
eigenmodes according to (17).
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